Department of mathematics and Engineering physics
First term exam 2019-2020
Preparatory year

- Illustrate your answers with sketches when necessary
- The exam consists of one sheet (two pages)

Date: 11/1/2020
Duration: 3 hours
General chemistry/EMP013

- No. of questions: 4
- Total Mark: 90 Marks

Question (3) [23 marks]

(3a) Draw the suitable graph that represents each of the following: answer 3 points only

Phase diagram of a matter :	Hennery's law:
Partially miscible liquids:	Raoul's for acetone/ethanol solu

(3b) What is distillation? How can we separate two miscible liquids based on this principle?
-Distillation: is a process by which a mixture of liquids is separated into its components. Two ways:
1- Simple distillation: by heating, the most volatile liquid comes out first (wide different B.P $>100^{\circ} \mathrm{C}$).
2- Fractional distillation: different B. $\mathrm{P}<100^{\circ} \mathrm{C}$. Applied in industry by using fractional distillation column.
(3c) Tabulate the chemical composition of cement and write short note on one its pollution.
[6 marks]

Oxide	$\mathbf{C a O}$	$\mathbf{S i O}_{2}$	$\mathbf{A l}_{\mathbf{2}} \mathbf{O}_{3}$	$\mathrm{Fe}_{2} \mathbf{O}_{3}$	$\mathbf{M g O}$	CaSO_{4}
abbreviation	C	S	A	F	M	Gypsum
$\%$	$60-65$	$19-25$	$3-8$	$1-5$	$0-5$	$1-4$

Emissions to air: 5-7\% of the total CO_{2} emission. It can be:
Directly: during heating of limestone.
Indirectly: during burning of fossil fuels to heat the kiln Other emissions such as $\mathrm{NOx}-\mathrm{SO}_{2}$ - volatile organic compounds, $\mathrm{HF}-\mathrm{HCl}-\mathrm{CO}$. The ways to reduce these emissions:
1- By replacing fossil fuels used in kiln by natural gas.
2- By Capturing CO_{2} emissions through: - Carbon capture and storage" (CCS) units - Accelerated carbonation method by passing CO_{2} through $\mathrm{Ca}(\mathrm{OH})_{2}$ solution to form CaCO_{3}.
(3d) Answer 4 points only of the following:
[8 marks (2 marks for each point)]

1) Predict whether each solute of the following forms solution with water or not?
$\mathrm{CH}_{3} \mathrm{OH}-\mathrm{C}_{10} \mathrm{H}_{8}-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-\mathrm{CaCl}_{2}$
Based on the rule "like dissolves like, and since $\mathrm{H}_{2} \mathrm{O}$ is polar, so only polar or ionic solids will dissolve in water, thus: $\mathrm{CH}_{3} \mathrm{OH}$ is polar so it is miscible with water - $\mathrm{C}_{10} \mathrm{H}_{8}$ is nonpolar so it is immiscible with water $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is polar so it is soluble in water - CaCl_{2} is ionic and it is soluble in water.

Calculate:

2) The mass of methanol (MW $32.0 \mathrm{~g} / \mathrm{mol}$) in 0.5 L aqueous solution that has (π) of 5.08 atm at $37^{\circ} \mathrm{C}$.

Osmotic pressure, $\pi=\mathrm{M} . \mathrm{R} . \mathrm{T}$ since $\pi=$ of $5.08 \mathrm{~atm}, \mathrm{R}=0.082, \mathrm{~T}=37+273=310 \mathrm{~K}$
$\pi=5.08=\mathrm{Mx} 0.082 \times 310$ thus, $\mathrm{M}=0.2 \mathrm{~mol} / \mathrm{L}$
$\mathrm{M}=\mathrm{n}$ (solute) $/ \mathrm{V}$ of solution thus, $0.2=\mathrm{n} / 0.5$ so $\mathrm{n}=0.1$ mole
$\mathrm{n}($ solute $)=$ mass $/$ molar mass, thus $0.1=$ mass $/ 32$ thus, mass $=\mathbf{3 . 2} \mathbf{g}$
3) The pressure at which the solubility of N_{2} gas in water is twice its value at 1.5 atm and $25^{\circ} \mathrm{C}$.

$$
m_{1} / m_{2}=P_{1} / P_{2} \text { since } m_{2}=2 \mathrm{~m}_{1}=\mathrm{P}_{1}=1.5 \mathrm{~atm}, \mathrm{P}_{2}=\text { ? thus, } \underline{P}_{2}=3.0 \mathrm{~atm}
$$

4) The vapor pressure of an ideal solution contains equal moles of benzene and toluene at $25^{\circ} \mathrm{C}$.

$$
\left(P^{\circ} \text { benzene }=95.1 \mathrm{mmHg}, P^{\circ} \text { toluene }=28.4 \mathrm{mmHg} \text { at } 25^{\circ} \mathrm{C}\right)
$$

Let benzene $=A$, and toluene $=B$, Solution obeys Raoult's law, so, $\mathbf{P}_{\mathbf{t}}=X_{A} . P_{A}^{0}+X_{B} . \mathbf{P}_{B}^{0}$ $\mathrm{P}^{\circ}{ }_{A}$ and $\mathrm{P}^{\circ}{ }_{B}$ are the vapor pressure of the pure solvents, X_{A}, X_{B} are mole fractions of A and B. n of benzene $=n$ of toluene $=1 \mathrm{so}, X_{A}=X_{B}=0.5, \quad P_{(\text {soln })}=0.5 \times 95.1+0.5 \times 28.4=\underline{\mathbf{6 1} .8} \mathbf{~ m m H g}$
5) The freezing point of a solution contains 0.5 mole CaCl in 500 g water (K_{f} of water is $-1.86^{\circ} \mathrm{C}$ molal).
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} . \mathrm{m} . \mathrm{i}$ since $\mathrm{k}_{\mathrm{f}}=-1.86, \mathrm{~m}=$ molality $=0.5 / 0.5=1.0$ molal, $\mathrm{i}=3$ ions
So, $\Delta \mathrm{T}_{\mathrm{f}}=-1.86 \times 1.0 \times 3=-5.58{ }^{\circ} \mathrm{C}$, So F.P $($ solution $)=\Delta \mathrm{T}_{\mathrm{f}}+\mathrm{F} . \mathrm{P}($ water $)=-5.58+0.0 \equiv \mathbf{- 5 . 5 8}{ }^{\circ} \mathbf{C}$

